Binding of daunorubicin to human serum albumin using molecular modeling and its analytical application.
نویسندگان
چکیده
This study was designed to examine the interaction of daunorubicin with human serum albumin (HSA) for the first time by fluorescence spectroscopy in combination with UV absorption and molecular modeling under simulative physiological conditions. The quenching mechanism was suggested to be static quenching according to the fluorescence measurement and the linearity of Scatchard plot indicated that daunorubicin bound to a single class of binding sites on HSA. The thermodynamic parameters, enthalpy change (DeltaH) and entropy change (DeltaS) were calculated to be -16.13 kJ/mol and 27.86 J/(molK), according to the Vant'Hoff equation. These data suggested that hydrophobic interaction was the predominant intermolecular forces stabilizing the complex, which was in good agreement with the results of molecular modeling study. In addition, the effects of common ions on the binding constant of daunorubicin-HSA complex were also discussed at room temperature. Moreover, the synchronous fluorescence technique was successfully employed to determine the total proteins in serum, urine and saliva samples at room temperature under the optimum conditions with a wide linear range and satisfactory results.
منابع مشابه
Study of interaction between nicotinamide and human serum albumin using spectroscopic techniques and molecular docking simulation simulation
Human serum albumin is one of the most important blood proteins that has the ability to bind a wide range of compounds and different drugs. Hence, knowing how drugs bind to albumin is crucial to understand their pharmacokinetics and pharmacodynamic properties. The binding of drugs to protein affects the drug's excretion, distribution and interaction in the target tissues. Nicotinamide (NA) is a...
متن کاملMolecular Interaction of Benzalkonium Ibuprofenate and its Discrete Ingredients with Human Serum Albumin
Studying the interaction of pharmaceutical ionic liquids with human serum albumin (HSA) can help investigating whether or not ionic liquid formation can enhance pharmacological profile of the discrete ingredients. In this respect, in the present work, the interactions of Benzalkonium Ibuprofenate, as a well-known active pharmaceutical ionic liquid, Benzalkonium Chloride, and also Sodium Ibuprof...
متن کاملMolecular Dynamics Simulation and Free Energy Studies on the Interaction of Salicylic Acid with Human Serum Albumin (HSA)
Human serum albumin (HSA) is the most abundant protein in the blood plasma. Molecular dynamics simulations of subdomain IIA of HSA and its complex with salicylic acid (SAL) were performed to investigate structural changes induced by the ligand binding. To estimate the binding affinity of SAL molecule to subdomains IB and IIA in HSA protein, binding free energies were calculated using the Molecu...
متن کاملIsothermal Titration Calorimetry and Molecular Dynamics Simulation Studies on the Binding of Indometacin with Human Serum Albumin
Human serum albumin (HSA) is the most abundant protein in the blood plasma. Drug binding to HSA is crucial to study the absorption, distribution, metabolism, efficiency and bioavailability of drug molecules. In this study, isothermal titration calorimetry and molecular dynamics simulation of HSA and its complex with indometacin (IM) were performed to investigate thermodynamics parameters and th...
متن کاملStudies of Interaction between Propranolol and Human Serum Albumin in the Presence of DMMP by Molecular Spectroscopy and Molecular Dynamics Simulation
The interaction between propranolol (PROP) and human serum albumin (HSA) was studied in the presence of dimethyl methylphosphonate (DMMP). DMMP is usually considered as a simulant for chemical warfare agents (CWAs). For this purpose fluorescence quenching, resonance light scattering (RLS), synchronous, three-dimensional fluorescence spectroscopy and molecular dynamics (MD) simulation were emplo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of biological macromolecules
دوره 42 3 شماره
صفحات -
تاریخ انتشار 2008